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Abstract

This paper generalizes the main result of “Conformal Einstein spadéslimensions” published
in Ann. Global Anal. Geom. 20(2) (2001). We present necessary and sufficient tensorial conditions
for a certain class of semi-Riemannian manifolds to be conformally related to Einstein spaces.
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1. Introduction

Riemannian spaces conformally related to Einstein spaces were already considered by
Brinkmann in the 1920s (cf2,3]). Because of the interest in theoretical physics this prob-
lem is often studied in four-dimensional Lorentz geometry[(9,12,20,4,11)}] The results
of Kozameh et al12], Wiinsch20] and Czapor et aJ4] provide tensorial invariants which
vanish if and only if the four-dimensional Lorentz manifold is conformally related to an
Einstein space. Ifil5], we found necessary and sufficient conditions Nedimensional
semi-Riemannian manifolds to be conformally related to Einstein spaces under the assump-
tion that detV # 0, whereW : A3(T*M) — A%(T*M) is the Weyl tensor considered as
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endomorphism on two forms. Recently Ed{jal gave an explicit expression for the con-
sidered vector field ifil5] which makes the computations easier. Furthermore, Gover and
Nurowski[9] improved the result for th&-dimensional case. They provided necessary and
sufficient tensorial conditions for weakly generic metrics to be conformal Einstein spaces
where weakly generic means that the rank of the below introduced béndlaishes at
all points of the manifold: ri§) = 0. The main results in this paper deal with the case that
the rank of€ is less or equal to one on an open and dense subset of the manifold. Since
detW # 0 yields rk€) = 0, but on the contrary there is a huge variety of manifolds with
rk(€) < 1 and deWV = 0, the results in this paper and[B] mean a major improvement to
the result i15].

Suppose ¥, g) is a semi-Riemannian manifold of dimensier= 4 andW the Weyl
tensor, then the set

E:={veTM|W(,.,..)=0CTM

is conformally invariant and a vector space in each fiber. Mgtbe the set of all points
of M at which the rank of is locally constant, thei¢ is open and dense i and¢& is
a vector bundle oveM¢. In Sectiond, we prove some basic properties&ffor instance
that€ is integrable on spaces with harmonic Weyl tenstispaces). Another fact is that
the rank of€ is less or equal ta — 4 as long ag is not conformally flat and the restriction
of g to £ is non-degenerate. In particular, in the four-dimensional Riemannian case each
connected componet of Mg is either conformally flat (i.e€ = TM) or £ is trivial on U
(i.e.£ = {0}). As already mentioned, metrics with= {0} are called weakly generic [8].
Since Einstein spaces aréspaces and the conformal equivalence problemdor
spaces is a linear problem, we start with the consideration of confarraphces. A semi-
Riemannian manifold¥/, g) is conformally related to a C-space if there exists a function
¢ . M — R with

0=6W —(n—3)W(, ., ., Ve).

The solutionV¢ of this equation is unique ifM/E. In Section5, we define explicitly a
smooth vector field : Mg — TM which is the only possible solution of the above equation
in TM/E&. In particular, a semi-Riemannian manifold is conformally related to a C-space if
and only if

1
Cr=——=W-WwW(,..T
n—3

vanishes and there is a vector fidld M¢c — £ such thatV + T is a gradient field on all
of M. The vector fieldT is well defined for all semi-Riemannian manifold®(g), but
generally depends on a choice of a Riemannian métdo M. In order to definel, we
show in Sectior3 that the Moore—Penrose inverse (taken with respect to a Riemannian
metric) of a smooth endomorphism yields a smooth endomorphism on an open and dense
subset of the manifold, in our case this subset coincides Mijth

In Section6, we consider spaces conformally related to Einstein spaces of dimension
n > 4, since the three-dimensional case is trivial. We prove that tH&) (@nsor
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. scal I 2
Er =Ric— g+ (n—2)( VT* + T* @ T* — =(div(T) + |T|d)g
n n

is conformally invariantin case r€j = 0. Hence, a semi-Riemannian manifoM,(g) with
& = {0} is locally conformally related to an Einstein space if and onlg-f vanishes. A
similar statement was also shown by Gover and NurowdHKiji(iweakly generic case). This
isamajor extension of the previous resultlif], since de¥V # Oyields rk€) = 0, butthere
is a huge variety of spaces with &(= 0 and de¥V = 0. For instance, all four-dimensional
Riemannian manifolds which are (anti) self-dual and not conformally flat satisfy g(0
and detv = 0.

In the last section, we discuss the cas€JkE 1. In order to do so we suppose thats
a (normalized) nowhere vanishing vector field with valueS &md consider the vector field
S =T + fV for a functionf. Trying to solveEs = 0 supplies a first order pde-system of
Riccatitype for. In most cases, itis possible to comptagplicitly by tensorial obstructions.
However, if the Einstein metric is not unique in the conformal class, this system has two
solutions. Moreover, this approach provides necessary and sufficient tensorial condition for
the existence of a non-trivial solutiop of V2y = AT‘/’g on Einstein spaces. Solutions of
this pde-system characterize the different Einstein metrics in the conformal class as well as
warped product metrics (cf13]), in the four-dimensional Lorentz case they characterize
plane gravitational waves.

2. Preliminaries

Let (M", g) be a semi-Riemannian manifold alde the Levi—Civita connection fgy,
thenR denotes the Riemannian curvature tensgqy:of

R(X,Y, Z,T)=g(RxyZ,T) = g(VxVyZ — VyVxZ = Vix |Z, T).
The Ricci tensor Ric is given by Ri&( Y) = tracqV — Ry xY} and the scalar curvature
by scal= trace(Ric). Using the Kulkarni-Nomizu product:
(§OMN(X,Y.Z,T)
= g(X, Th(Y, Z) + g(Y, 2)h(X, T) — g(X, Z)h(Y, T) — g(¥, T)h(X, Z)
we obtain the Weyl tensd¥ and the Schouten tenstr
1 . scal
W =R-— g, t.=—— | Ric— . 1
80 n—2< 2(n—1)g) @)

We consider conformal transformationd(g) — (M, g := ¥ —2g) and denote the sym-

bolsforgbyV, R, W, ....If (M, g) — (M, g := ¥—2g) is a conformal transformation with
¥ = €?, the Levi—Civita connections and the Weyl tensors are related by:

VxY = VxY — dp(X)Y — dp(Y)X + (X, Y) V&

2
R )



M. Listing / Journal of Geometry and Physics 56 (2006) 386—404 389

In this caseévs¢ is the gradient of with respect to the metrig, in particular ifx : TM —
T*M is the isomorphism given by*(X) = g(X, Y), d¢ equals ¥8¢)*. We define the
divergence of a (&) tensorA by:

(Sr(A) = Q:r,s-i-l(VA)’ (I" = S)

whereg, ; is the metric contraction with respect to the indices)(andV A is the following
(O, s + 1) tensor field:

VA)(X1, ..., X5, V) = (VyA) (X1, ..., X;).

If Ais symmetricg, A does not depend onand ifA is a curvature operator, we introduce as
abbreviatiorSA := §4A. Moreover, we define the exterior derivative of a symmetrij0
tensorb by

dVb(X, Y, Z) := (Vxb)(Y. Z) — (Vzb)(X, Z).

The differential Bianchi identity yields (cf1]; Ch. 16.3)
SR=d"Ric and SW=(n—3)d"¢ (3)

wheret is the Schouten tensor introduced in equaiibn A semi-Riemannian manifold
(M", g) of dimensiom > 4 is calledC-space or space with harmonic Weyl tensor (cf. [1];
16.D) if sW vanishes. Suppoge= g is a conformal transformation with = €?, then
we obtain the well-known relation (cf1]; 16.25):

SW =W — (n — 3)W(,, ., ., V4¢). (4)

3. Moore-Penrose inverse transformations

Suppose ¥, ) is a Riemannian vector bundle ové. If A :V — Vis a symmetric
bundle endomorphism with respect to the inner produtien there is at each poipte M
an unigue endomorphismf, € End(V,) which satisfies (Moore—Penrose inverse8f)

# # # #
ApoApoApzAp, ApoApoApzAp,

(5)

Apo A% and A% o A, are symmetric w.r.t.
Let M4 consist of all pointsp € M at which the number of distinct eigenvaluesAfs
locally constant, theM 4 is open and dense M. If A € I'(End(V)) is of orderC, the map
A#ZMA—> End(])WA), pl—)Aj;

is of orderC*, in particularA* is a section in End{|ss,). A* is called theMoore—Penrose
inverse of A. The bundley admits in every point oM an orthogonal decomposition into
eigenspaces of: V), = V}, DD V’;,. Since the number of distinct eigenvaluesAois



390 M. Listing / Journal of Geometry and Physics 56 (2006) 386—404

constant in the connected componentsf, p — V{, is differentiable on each component
of M. Thus, )’ — U is a subbundle ob — U as long ad/ C M is contained in a con-
nected component @ff 4. The existence and the uniqueness of the Moore—Penrose inverse
follows from linear algebra, while the differentiability @ can be proved as follows. Let
U be a connected component &f4, then ImA) — U and ker@) — U are subbundles
of V — U. In particular,A|y supplies an orthogonal decompositidr= Im(A) @ ker(A).
Now A restricted to Im4) is invertible. Hence, if we set” := A~1 on Im(A) andA* := 0
on ker(A), the endomorphism? satisfies the identities if5). Since Im@) and ker@) are
subbundles oV as well as the assignment— A~ is smooth A* is of orderC* on M,

as long ag\ is of orderC*. Furthermore, if dett does not vanish oi, A* equalsA—! and

is defined on all oM.

Definition 1. Let T (M) = (TM)" ® (T*M)* denote the bundle of;(s) tensor fields on
a semi-Riemannian manifold{, g). SupposeA € F(TS(M)) is an algebraic curvature
tensor, them becomes an endomorphism®$(M) in the following way:

A2 - T9M), X QY > AX*® YY)

where A(X* @ Y*)(Z,T) =AY, Z, T, X). If b e SS(M) is (skew) symmetric,A(b) is
(skew) symmetric. In particulagl is an endomorphism on two forms:

A AXT*M) - AX(T*M).
Since the first Bianchi identity implies
SAX* AYH), ZX AT*) = AX* AY*)NZ,T) = A(X, Y, Z,T),

the endomorphisma is symmetric omi?(T* M) with respect to the tensor product extension
of g. In this caseX* A Y* is the two form given byX* ® Y* — Y* @ X*.

Let W be the Weyl tensor onM", g) and define

=] & cTM. where &,:={veT,MW(....)=0}.
peEM

The setf, is a vector space for ajp € M, but in generak is not a vector bundle over

M. In the Riemannian case, the Weyl tensor considered as symmetric endomorphism
W: A2(T*M) — A?(T*M) is diagonalizable, however, jf is indefinite, the Weyl en-
domorphismWV can be nilpotent. For instanci/ is not diagonalizable for space times of
Petrov type N. Thus, we introduce a Riemannian métoa TM and extend: in the usual

way toT*M and A2(T*M). Denote byW' : A2(T*M) — A%(T*M) the adjoint oV with
respect tdi, thenW'WWis non-negative definite and symmetric with respedét tdoreover,

let £ be theh-orthogonal complement @ in TM, then thei-orthogonal decomposition
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A(T*M) = kergV'W) @ Im(W''W),
A(T,M) = AXE @ AXE) 0 &) ® &,
and kerty'W) = ker(V) imply:

/ ©)

In particular, this inequality shows thd}, is the trivial vector space if d@V, does not
vanish. Contrary, a lower bound of dify in terms of dim ker¥V,) is impossible in general.
Since ifM is even-dimensional and there is a non-degenerate two fdmihe image of
W,, the one-forrm(v, .) does not vanish for alt € T, M — {0} which shows din€, = 0.
In particular, Im§V,) could be two-dimensional¥ is trace free) and dirfi, = 0.

Denote byw : T*M — T*M the negative Ricci contraction a§'W, i.e. if 6 is a one-
form andX a vector fieldyo(6)(X) is the trace of the endomorphism:

i 1
dim kerQV,) = dimé, (n _ d'm5”+> .

T*M — T*M, N XLWWO A ).

If f1...., fuis abase of ,M andny, ..., n, the corresponding cobaseBf M (n;(f;) =
8ij), we have:

w(@) =Y LW Wi A6).
i=1

Using ah-orthonormal base, we conclude thatis symmetric with respect tb and in
particular, V'W > 0 suppliesv > 0. Sincetv is symmetric with respect to the positive
definite metrich on T* M, there is an open and dense suldggtof M on which the Moore—
Penroseinverse af exists. Moreover, theisomorphism TM — T*M, v — g(v, .)yields
an isomorphism

£, — ker(w,). @)

The fact x(€,) € ker(v,) follows from the definitions. In order to see equality, let
ve T,M be a vector withro(v*) = 0. We showW(v* A 6) = 0 which is equivalent to
WW(* A0) =0 forall 6 e T;M. SUpposSe, . .., 1m € A2(T;;M) is ah-orthonormal
base ofAz(T;,“M) consisting of eigenvectors to the non-negative eigenvalyes ., A,

of Wth. Considering the two formsg; as skew symmetric mapgg;M — T;M (use

h) leads tor, = —27:1 /\j(nj)z. Since each of these summands is non-negative def-
inite, to(v*) = 0 implies @j)z(v*) =0 for all j with 1; # 0. But this gives the claim
WV* A ) = 0. Therefore, equatiofv) and the above arguments prove that> My,

is smooth. In particular, it/ is a connected component &, &y is a subbundle of M|y

In the introduction we definetl¢ to be the set of all pointg € M at which the rank of is
locally constant, in particula¥, € M¢. Since the map — w*w is thes-orthogonal pro-
jectionT*M — ker(w), the endomorphism~1(1 — ro*w)« is theh* = g~ 1hg-orthogonal
projectionTM — £ on My, (in this case and in the following the Riemannian metric
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is defined oM by h*(X, Y) := h(X*, ¥*)). Hence x (1 — w*w)* : TM,, — £ can be
differentiable extended td7¢. Use(7) and the facto” = ()imw)) ! to show thatw® is
differentiable onM¢. Thus, we can assumé,, = Mg, while M¢ does not depend on the
choice of the Riemannian metritc

Since the Weyl tensor is conformally invariant, it should be mentioned&hetr(V)
and Mg are invariant under conformal transformation.

Example 2. The Reissner—Nordstm solution (cf.[10]; (5.5)) provides an example of a
manifold with Mg £ M. Let:

2m 2 dr2
ds® = — (1— +62> A2+ (d6? + sin? 0 dg?)
r r (1_27m+%)

be the line element o := R x R0 x, §2 with ¢ > m > 0. Then (1, ds?) is a four-
dimensional Lorentz manifold. The Weyl tensor vanishes on the hypersuNaee

{(t, r= fn—z 0, ¢> lt e R, (0,9) € SZ}, butonM¢ = M — N the Weyl tensor is non-zero,
in particular€ = {0} on Mg.

4. Some facts about £

Lemma 3. Suppose (M, g) is a semi-Riemannian manifold with a harmonic Weyl tensor:
8W = 0. Then & is an integrable distribution on Mg.

Proof. We first remark thasW = 0 is equivalent to YW = 0 (cf. [1]; 16.41) where W
is given by

dYW(X, Y, Z,.,) = (VxW)X Z,.,.)+ (VyW)(Z, X, ., )+ (VZW)(X., Y, ., ).

Supposd/ andV are vector fields with values ifi We have to show thatj, V] is a section
in £. SinceV is torsion free an®@ x W has the symmetries of a curvature operator, we obtain
for all vector fieldsX, Y, Z and allU, V € T'(£):

wW(U, V], X,Y,Z) = W(VyV — VyU, X, Y, Z)
= (VuW)(V. X, Y, Z) — (Vv W)(U, X. Y, Z)
=d"W(U. V. X. Y, Z) - (VxW)(U, . Y, Z).
We assumeddW = 0 and sincdJ, V e I'(€) yields

(VxW)(U, V. Y, Z) = 0,

W([U, V], X, Y, Z) vanishes for allX, Y, Z which proves [/, V] € I'(E).

Lemma 4. Suppose (M", g) is a semi-Riemannian manifold and £ is non-degenerate on
Mg, i.e. the restriction of the metric g to £ is non-degenerate. Then the rank of £ is less or
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equal to n — 4 on the components of Mg which are not conformally flat. In particular, if €
is non-degenerate and k() > n — 4 on Mg, we conclude Mg = M and g is conformally

flat.

Proof. £isnon-degenerate ifand only if tgeorthogonal compleme#t- is non-degenerate
(cf. [17]). Let g; and W, be the restrictions of, respectivelyW to &L, thenW, is a Weyl
curvature operator for&(, g)- Since the space of Weyl curvature operators is trivial in
dimensiorm < 3, we conclude tha, = O if rk(&1) < 3. In particular, the Weyl tensa¥
has to vanish on each component\f which has rk€t) < 3.

Corollary 5. Let (M, g) be a four-dimensional Riemannian manifold. Suppose U is a
connected component of Mg, then either (U, g) is conformally flat or the rank of the bundle
& — U is zero. Moreover, choosing h = g, the Ricci contraction of W? = W'W satisfies
(cf [1]; 16.75 resp. [5])

w = 2tr(W?)ld.

If (M, g) is a four-dimensional Lorentz manifold and U is a connected component of Mg,
one of the following three cases occurs:

(1) (U, g) is conformally flat.
(2) (U, g) is of Petrov type N and & is one-dimensional as well as light like.
(3) rk(€) =0o0n U.

Proof. We only consider the Lorentz case. The above lemma shows tainot be non-
degenerate in dimension four, i.e. we h&ve {0}, £ = TM or £ is light like. Moreover,
using the Hodge star operator arf M and the fack o W = Wo %, then& must be one-
dimensional and Ini)) has to be two-dimensional. This shows th&t £) is of Petrov
typeN.

A semi-Riemannian manifoldM, g) is said to beconformally symmetric if the Weyl
tensor is parallelVW = 0. In particular, a conformally symmetric space has a harmonic
Weyl tensor.

Proposition 6. Suppose (M", g) is a connected conformally symmetric space. Then & is
an integrable distribution on M (i.e. Mg = M) , which is preserved by the Levi—-Civita
connection: VxU € I'(E) forallU € I'(€) and X € I'(TM).

Moreover, if £ is non-degenerate of rank m <n — 4, (M, g) is locally a Riemannian
product:

| |
M= My x My, g = mi(g1) + m3(g2)

where ;. My x Mp — M;, j=1,2, are the projections and (M;, g;) are semi-
Riemannian manifolds with wi(TM1) = &€ and 73(TM>) = &t
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Proof. Let p and ¢ be arbitrary points inM and P, : T,M — T,M be the parallel
transport for the smooth curve: [0, 1] — M with y(0)= p and y(1)=g4. P, is an
isometric isomorphism. The Levi—Civita connectionBtwW ® T*M ® T*M induces an-
other parallel transporp,, : (T;fM)3 — (T;M)3. Since the Weyl tensor is parallel, we
obtain

P,(W(,.,.,.))=W(Pw,.,.,.) (8)

for any v € T,M. In order to see this lef = 6(r) be the parallel transport @f(0) =
W(v, ., .,.) alongy. Moreover, suppos& = X(¢) is the parallel transport of along y
and definey(r) := W(X(t), ., ., .). By definition we havev,,6 = 0 andV,, X =0, i.e. we
conclude fromvw =0

Vo= (Vy W)X, .....)+ W(V,X,....)=0.

Since parallel transport is uniqug0) = 6(0) supplies;(1) = 6(1) and this shows equation
(8). Thus, ifvis containedir€,, W(v, ., ., .) = 0 and equatio8) yieldsW(P,v, ., .,.) =0
which is equivalent taP,v € &,. This provesP, : £, — &, and sinceP, is injective, we
conclude din€, < dim¢&,. Considering the parallel transport frapo p yields dim&, <
dim&,. Therefore, din€,, does not depend on the choicepoé M and¢ is a subbundle of
TM. Furthermore, we have already proved tfi&t integrable iffW = 0.

Let U be a vector field with values i thenW (Vx U, Y, Z, T) = 0 (useVW = 0) shows
VxU e I'(€). If Eis non-degeneraté;- is non-degenerate afdt decomposes orthogonal
into £ @ £*. Since parallel transport preserves the decompositidn= £ & £+, we obtain
the second claim from holonomy theory.

Remark 7. If (M, g) is an irreducible locally symmetric space, we concliie= M and
eitherg is of constant sectional curvature &&= {0}.

5. Conformal C-spaces

A semi-Riemannian manifoldM", g), n > 4, is conformally related to a space with
harmonic Weyl tensor if and only if there is a functigrwith:

Wz = (n — 3)W(Z* A dg) 9)

[cf. equation(4)]. In this caseSW is the two form defined by
SWz(X,Y) :=8W(X, Y, Z).

A necessary condition for a solution (&) is Wz € Im(W), but we compute @ explicitly
which means that this condition will be superfluous. k& a Riemannian metric dfM,
W' be the adjoint 0¥V with respect ta:, w be the negative Ricci contraction W and
ro” be the Moore—Penrose inversennfvhich is well defined and smooth die. Applying
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W' to equation(9) yields

WHEW2) = (n — WIW(Z* A di).
Moreover, supposey, ..., e, is ag-orthonormal base df, M, i.e. g(e;, e;) = €;5;; with

€ := g(ei, e;) = £1. Letna, ..., n, be the corresponding cobasefifiM, thenn; := € e’
shows

D el W' (W) = (n — 3) Y _ eiei WM(e} A dg) = (n — 3)r(dep).
i=1 i=1

Thus, theh-orthogonal projection ofglto (€)1 is given by
1 n
# # t
= — i€i 1) e; .
"o (deg) - 3m <i§=le eiL WH(SW ,)>
In particular, we obtain
do = 1 ot f el WH(SW,,)
n_3 L i€i e

on the components dif¢ where rk€) = 0.

Definition 8. Let (M", g) be a smooth semi-Riemannian manifold of dimension 4 and
e1, ..., e, be ag-orthonormal base with; := g(e;, ¢;) € {£1}. For any choice of a smooth
Riemannian metrié on TM the vector fieldl' given by

1 n
T = g(T, ) = mm# E EieiLWt(SWei) =
i=1

20 — 3)m# ”Zk(wt)ijk sWik (10)
and the (03) tensor

Cr:=dve—w(,., .. T)
are smooth on the open and dense subgett M.

In the definition ofCt we used d¢ instead ofsW in order to get the Cotton tensor in
dimensiorm = 3, but for the computations we consider:

Cr — 1
=53
In general, the vector fielfl as well as the tensa@ip depend on the choice of the Riemannian

metrich. If g is indefinite, there is no canonical choicelghence it seems difficult to get
a tensorCt only depending oig. However, ifCt vanishesT is unique inTM/&:

SW—w(.,.,..T). (11)
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Lemma 9. Suppose (M, g) is a semi-Riemannian manifold and T1 as well as T2 are the
vector fields defined in (10)with respect to Riemannian metrics hy and hy. Then C, vanishes
if and only if C, vanishes. Moreover, we have Ct, = Cr, if and only if Ty — T2 € I'(£).

Proof. The second claim is obvious. In order to see the first claim, we use the definition of
T and the definition o€, in equation(11).

n
TS = mg <Z Eieil_Wt(C']I‘l(., wei) + Wer A TI)))
i=1

= mgmz('ﬂ"{) + mg (Z EieiLWt(C’H‘l(-a . ei))) .

i=1

Thus, Ct, = 0 andwj(T5) = T3 imply wha(T; — Tj) = 0. Sincewj, is the or-
thogonal projectio™*M — (£*)"2 with respect toi,, we concludel; — T5 e I' (7).
ThereforeT; — T2 € I'(€) andCt, = 0vyieldCt, =0. O

Remark 10. The vector fieldT does not depend on a conformal transformation of the
Riemannian metrié.

Proposition 11. Suppose g = ¥~ 2g is a conformal transformation with = e?, then Eﬁ
equals Cr, while for the definition of T and T the Riemannian metric h is fixed or scaled
by a conformal factor.

Proof. W = 2W suppliesW = y2W andW' = y2W!, in particular, we obtaim =
Y4 and ® = . If e1,..., ¢, is an orthonormal base with respect gper :=
Ve, ..., e, .= Ye, is an orthonormal base with respecigtad.e.

_ 1 _ n Y
T =— 3m# (Z e,-eiLWt(awei))
i=1

! ro” (i eiei WHW,, — (n — 3W(e A d¢>))> =T* — n'ro(dg).

T -3 P
Thus, the vector fields satisfy:
T = y2T — yX(V¢) i, (12)

where V8¢) .+ is the projection ofVe to the h*-orthogonal complement & in 7M.
SinceW(,, ., ., (V¢)¢) vanishes, we conclude the conformal invariance of the tefigaf
n > 3 (use(4)):

Ci= 35_147 —W(,.,..T)

n—

1
= m(SW - W(, vy ey Vg¢) — W(, ey o T — (Vg(p)th*) — C’]I‘.
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In dimensionn = 3 the conformal invariance of the Cotton tengtf = dV ¢ is already
known. O

Since Cr is trivial on a space with harmonic Weyl tensor, the vanishinggfis a
necessary condition for a semi-Riemannian manifold to be locally conformally related to a
C-space. Howevet = 0 is a sufficient condition if and only if there is a sectigrin £
in such a way thal + V is a (differentiable) gradient field af. Hence, we conclude the
following in case rk€) = 0.

Proposition 12. Let (M", g) be a simply connected semi-Riemannian manifold of dimension
n > 4 such that rk(€) = 0 on Mg. Then (M, g) is (globally) conformally related to a space
with harmonic Weyl tensor if and only if dT™* and Ct vanish on Mg as well as T can be
(differentiable) extended to M. Moreover, if detW does not vanish on Mg, the condition
dT* = 0 follows from Ct = 0.

Proof. The claims follow from the uniqueness of the conformal factor (up to scaling) and
the definition ofT andCr. SinceM is simply connected arii* is exact, there is a function

¢ : M — Rwith V¢ = T. Sety := ¢?, theny—2g is a space with harmonic Weyl tensor.

In order to see the last claim we consider the divergenaépoivith respect to the third
argument. A straightforward calculation shows (&6])

83(CT) = CT('? ) T) - W(dT*)9

i.e. we conclude @* = 0 from the injectivity ofWWandCt =0. O

6. Conformal Einstein spaces

A semi-Riemannian manifold\{, g) of dimensiom > 3 is calledEinstein space if the
traceless Riccitensor Ric= Ric — Sfl—a'g vanishes. ¥, g) is said to be aonformal Einstein
space if gislocally conformally related to an Einstein space. Lt g) — (M, g := ¥ —2g)
be a conformal transformation with = e?. The Ricci tensor has the following transfor-

mation behavior (cfl13]; Lemma A.1 of1]):
Ric = Ric+ (n — 2)[V?¢ + dp @ dg] + [Ad — (n — 2)(VEe, V9)]e, (13)

whereV2¢ is the Hessian af (i.e. V2p(X, Y) = (Vx V8¢, Y)) andA¢ is the trace of2¢.
If (M, g) is an Einstein space, we conclude for the Ricci tensonfy):

0 = Ric® + (n — 2)[V2¢ + dop ® d¢p] — nT_z[mt) + |Vg¢|2]g. (14)

Moreover, supposeM, g) is a semi-Riemannian manifold ad: M — R is a function
which satisfieg14), then (1, e?%g) is an Einstein space [u$&3)].
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Definition 13. Let V be a vector field, then the tracelessZptensor field:
. PO « X . 1
Ey :=Ric° + (n — 2) (VV + V@ V* — —[div(V) + g(V, V)]g)
n

is calledconformal Ricci tensor with respect to V.

The tensor fielEy is symmetric if and only ifVV* is symmetric, i.e. if and only i¥/*
is closed. Thus, a semi-Riemannian manifald, ) is locally conformally related to an
Einstein space if and only if there is a vector fi#ldvith Ey = 0. If M is simply connected
andEy vanishes, there is a functiah = € which gives the Einstein spac#( y~?g). In
this caseV equalsvé¢. The differential Bianchi identity shows that an Einstein space has
a harmonic Weyl tensor [c{3)]. Thus, the first candidate of a vector fidfdvhich satisfies
Evy = 0 is the vector fieldl given in(10).

Lemma 14. Let g = g, ¥ = ¢®, be a conformal transformation and T as well as T be
the corresponding vector fields defined in (10) with respect to a fixed Riemannian metric
h or Riemannian metrics h and h with h = ¥ ~2h. If d¢ is contained in the h-orthogonal
complement of £ C T*M in every point of Mg, the conformal Ricci tensors satisfy:

ET = ET.

Proof. Introduce the (02) tensor
Fy :=VV*+V*@ V* - ;[dlv(V) + g(V, V)lg.

One easily verifies for two vector fields andZ:
2
Fyiz=Fy+F;+V'QZ" +Z*QV* - ;g(V, Z)g. (15)
Moreover, usind2) a straightforward calculation yields:
_ . . 2

Sincey 2 is the conformal factor, equatiqi2) supplies’IF_ = ¥2(T — Y) whereY is de-
termined by thes-orthogonal decomposition ofgd= X* + Y* in £& @ () = T*M
[X*: Mg — & andY* : Mg — (£)'"]. Thus, we obtain:

— 2

Fr=Fry+dp®(T* —Y*)+ (T* - ¥*) @ dpp — ;g(ngb, T —Y)g

2
:FT—FY+X*®(’]I‘*—Y*)+(’]I‘*—Y*)®X*—;g(X,T—Y)g.
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Use equatior{13) to conclude that the traceless Ricci tensors are related by)Fv,.
Hence, the definition oy andVs¢ = X + Y show:

Erf :ﬁo +(I’l — Z)Frf
=Ric’ + (n — 2) [Fx+y+ Fr — Fy + X* @ (T* — ¥¥)

2
+(T"—Y")® X* — ;g(X,T— Y)

2
=ET+(n—2){Fx+X*®T*+T*®X*—ng(X,T)g . (16)

But we assumed that¢dtakes it values in &) € 7*M, i.e. X =0 supplies the
claim. O

Remark 15. We have proved thaEr is a conformal invariant for all semi-Riemannian
manifolds (M, g) with rk(€) = 0. In particular, if (4, g) is a Riemannian four manifold;y
is conformally invariant on the open sub$gte M|W(p) = 0} C M.

Theorem 16. Suppose (M, g) is a simply connected semi-Riemannian manifold of dimen-
sion n > 4 and with rk(E) = 0 on Mg. Then (M, g) is (globally) conformally related to an
Einstein space if and only if ET vanishes on Mg and T is extendible to a vector field on M.
In particular, this equivalence does not depend on the choice of the Riemannian metric h
in order to define T.

Proof. SinceEr is a conformal invariant on manifolds with &)| = 0 andT vanishes on
Einstein spaces = 0 is a necessary condition. Conversdly; = 0 implies thatT* is
closed. Sincé/ is simply connected, there is a functipn M — R with T = V¢, and the
above computations show that#g is an Einstein metric of/. [

The following corollary was already proved[it5] and it is a result of the main theorem
and the analytic regularity of Einstein metrics (&f}).

Corollary 17. Suppose (M, g) is a connected four-dimensional Riemannian manifold. Then
(M, g) is a conformal Einstein space if and only if g is conformally flat or ET vanishes and
T is extendible to a vector field on M.

Et is a conformal invariant in the category of metrics with&k& 0 while Cr is a
conformal invariant for any metric. In particular, the vanishingBf is only sufficient
for a metric to be conformally Einstein, in case&k( O its vanishing is not necessary.
ConverselyCt = 0 is a necessary condition for all conformal Einstein spaces but in case
of dimensionn > 4 it is not sufficient. There is another invariant which has to vanish
for a conformal Einstein space. Tlgeneralized Bach tensor By (cf. [14]) is conformally
invariant. SinceBt vanishes for Einstein spacd; = 0is necessary fgrto be conformally
Einstein but according tfl12,18,16]it is not sufficient to guarantee thatis conformally
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Einstein. In the last section, we consider the casé)rkf 1, but if rk(€) is greater than
one, the problem of giving tensorial conditions which are necessary and sufficient for a
conformal Einstein space remains unsolved.

7. The case rk() =1

Suppose &/, g) is a semi-Riemannian manifold with &) = 1. We conclude from the
above considerations that if4 e ??g) is an Einstein space, the gradient/ois given by
the vector field:

S =T+ fv

where f : M — R is a smooth function andl is a fixed nowhere vanishing vector field
with values in€. Sinces is a gradient field, we obtain:

0=ds* = dT* +df A V* + fdV*. (17)

If dT* is not a section i€* A T*M, this yields an unique obstruction gand therefore a
solution of the problem. Thus, we can suppose thiidtahd dv* are sections id* A T*M.

Definition 18. In the case that € is not light like, we normalize V € I'(£) in such a way
that € == |V|?> = +1 and we set V, := €V. If € is light like, we choose V € I'(E) such that
there is another light like vector V. which defines a non-degenerate rank two distribution
ED®R -V, (ie. the restriction of g to this distribution is non-degenerate). We normalize
again by g(V, V) = 1.

Equation(17) yields:
0=df(V.)V* —df + fV.LdV* + V. dT*. (18)

We want to computgassumingts = 0. We conclude frong15)

Es=Er+(n—2) {df@ Vv — %df(V)g + VP VE— if2|V|2g]

+n—-2)f {vv* - %div(V)g + VT +T Q V* — %(V, T)g} )
Therefore, equatio(iL8) supplies
Bs=Er+(-2) | D+ A+ @00+ 79 (Ve v - Tvie)| a9
whereA andD are given as follows
A=VV* - ldiv(V)g+ V¥ @ T* + T* @ V* — 2(V, T)g
+ Vedv* ® V¥ — dv¥(v,, v)g

D:=V..dT* ® V* — %dT(VC’ V)g.
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Denote byi/ the rank one subbundle @M ® T*M which is generated by* ® V* —
%|V|2g. If ET 4+ (n — 2)D is nowhere a section it¥, the conditionEs = 0 supplies an
unique obstruction ofiand we had solved the problem. Thus, it remains to consider the
case thatET + (n — 2)D andA are sections iri/. We apply the vector field/. in both
arguments t@¢19), this leads to:

0= Es(Ve, Vo) = b1 + fba + x(df(Ve) + f2)

whereby := ET(Ve, V), b2 := (n — 2)A(V,, V.)andk := (n — 2) (1 — %|V|4).We insert
df(V,) into (18) and obtain a first order system of Riccati type:

0=df + f2v* + fr*+ z* (20)
with

b
y* = 22 V¥ — V. dT*.
K

= —=V* - V.dV¥, AR

K
Supposeg is a solution of this system, thegi20) yields equation(18) and furthermore,
df(V.) + f2 = — fba/k — b1/k simplifies(19)to Es = Q + fP:

Q:=Er+(n—2)D-— J—Z?T_;V‘,”VYZ (V* ®V*— %lvlzg)

. AV, V. 1 2
p_:(n_z){A—lfilvlz (v*®v*_;|V| g)].

In particular, ifP does not vanish, we obtain an unique obstructiofi do be more precise,
leth be a Riemannian metric M ® T*M,then0= h(Eg, P) = h(Q, P) + f - h(P, P)
yields f = —h(Q, P)/h(P, P).

Proposition 19. Let (M, g) be a semi-Riemannian manifold with rk(€) = 1 and let h be an
arbitrary Riemannian metric on T*M @ T*M. Then (M, g) is locally conformally related
to an Einstein space if and only if

e P = 0(in a neighborhood): The vector field

h(Q. P)

§=T-
h(P, P)

Vv

satisfies Es = 0.
e P = 0(in a neighborhood): The system (20) has a solution f and Q = 0.
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We will not discuss the necessary and sufficient integrability condition@@in detail.
If we take the exterior derivative ¢20) and insert ¢, this leads to

FAAV* + VEAY) + FAY* +2VF A Z¥) +dZ* + Y* A ZF = 0.

Since d/* + V* A Y* = 0 is equivalent taP is symmetric (cf. proof ofProposition 2)),

the conditionP = 0 yields an unique obstruction gras long as #* + 2V* A Z* is not
zero. Obviously, &* + Y* A Z* has to vanish if #* + 2V* A Z* = 0. In particular, as
the discussion of the Bernoulli system below shows, the vanishingZéf4dY* A Z*

and d* + 2V* A Z* are supposed to be sufficient for the existence of a solution of

(20).
This method can also provide non-trivial solutions of
A
v2y = &V, (21)
n

on Einstein manifolds. If¥, g) is an Einstein space and= ¢ 2g is a conformal trans-
formation ofg, theng is an Einstein space if and onlyqf is a solution of(21) (cf. [13]).
Suppose now thatM, g) is a simply connected Einstein space withdk& 1 onM. We
use the above approach to compute this solution4f& 2% ¢ is an Einstein spaca/¢ has
to be a vector field with values ifi (sinceg andg are C-spaces), in particulav¢ = fV
for a functionf. Sinceg is Einstein, we hav& = 0 and ET = 0. Hence, the systei{20)
reduces to a Bernoulli equation:

0=df + f2v* + fr*. (22)
Take d(fV*) = 0 into consideration, the necessary and sufficient integrability conditions
for this system are

dv* = V¥ A (VeedV*) = —V*AY* and o&* =0.

As usual, we divide the Bernoulli equation i and obtain a linear system which leads
to the solution 0{22). Suppos&’* = du for a functione, then the integrability conditions
yield that e“V* is exact. Therefore, we can assuim&= e*dg for a functiong, and a
solution of the Bernoulli system is given by

1

fis uniquely determined up to the choice of a constam{ = o + c. Thus, using potential
theory leads to the solution of the equat{@i) (note thatVe = fV andy = €?).
If (M, g) is an Einstein manifold, the fad@t = 0 reduces the tensérto

P=(@n—2)|VV*+VdV*® V* — uvV* @ V*

_ %(div(v) +dV*(Ve, V) — u|V|P)g
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wherep is given by(Vy, V, V.) if Vis light like and given by- nfldiv(v)| V|2if V is space
or time like.

Proposition 20. Suppose (M", g) is an Einstein manifold of dimension n > 4 and with
rk(€) = 1.Let V and V. be the vector fields introduced in Definition 18 Then locally there
is a non-constant function ¢ which gives an Einstein metric e gifand only if P = Oand
dY* = 0, where Y* = uV* — V.LdV*,

Proof. That P =0 and &* = 0 are necessary follows from the above considerations.
Supposd/ € M is simply connected and open. S&€t = do on U. The relation ¥ X* =
Lxg + dX* proves thaP (respectivelyA) is a symmetric tensor if and only if

dv* = V* @ V.dV* — V.udV* @ VF = V¥ A V.LdV*
(this is equivalent to the fact tha¥d is a section ir€* A T*M). Thus,P = 0 yields:
dV* = V¥ A VdV* = —V* AY* =da A V™.

In particular, €% V* is exact and equalssdor some functiorg. Choosel andg in such a
way thatg # 0 onU. Thenf := e %/8 is a solution of the systei22) and d(fV*) = 0.

Moreover, a straightforward calculation showg(#,) + f2 = —uf. Thus, equatiorf19)

reduces to:

Ey=(n-2)f {A —u (V* ®V*— iw&)] = fP.

whereE v vanishes if and only if, e?%g) is Einstein ¥¢ = V). O

The last two propositions are of particular interest in the four-dimensional Lorentz case,
since the rank of is less or equal to one on the component&gfwvhich are not conformally
flat. If g = ¥ —2g is a conformal transformation of two four-dimensional Einstein Lorentz
spaces which are not conformally flat, therand ¢ have to be Ricci flat as well as of
Petrov typeN. Moreover, the gradient of the conformal facipiis light like and parallel
(i.e. V2y = 0). Hence, a four-dimensional Einstein Lorentz manifalt ¢) which is not of
constant sectional curvature admits a non-trivial parallel vector field if and only£if ek(1,
gisRicciflatand? aswell as &* vanish. These Einstein spaces are called plane gravitational
waves (pp-waves which are Einstein spaces).
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