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Abstract

This paper generalizes the main result of “Conformal Einstein spaces inN-dimensions” published
in Ann. Global Anal. Geom. 20(2) (2001). We present necessary and sufficient tensorial conditions
for a certain class of semi-Riemannian manifolds to be conformally related to Einstein spaces.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Riemannian spaces conformally related to Einstein spaces were already considered by
Brinkmann in the 1920s (cf.[2,3]). Because of the interest in theoretical physics this prob-
lem is often studied in four-dimensional Lorentz geometry (cf.[19,12,20,4,11]). The results
of Kozameh et al.[12], Wünsch[20] and Czapor et al.[4] provide tensorial invariants which
vanish if and only if the four-dimensional Lorentz manifold is conformally related to an
Einstein space. In[15], we found necessary and sufficient conditions forN-dimensional
semi-Riemannian manifolds to be conformally related to Einstein spaces under the assump-
tion that detW �= 0, whereW : Λ2(T ∗M) → Λ2(T ∗M) is the Weyl tensor considered as

∗ Tel.: +1 631 632 8358; fax: +1 631 632 7631.
E-mail address: listing@math.sunysb.edu.

0393-0440/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2005.02.008



M. Listing / Journal of Geometry and Physics 56 (2006) 386–404 387

endomorphism on two forms. Recently Edgar[7] gave an explicit expression for the con-
sidered vector field in[15] which makes the computations easier. Furthermore, Gover and
Nurowski[9] improved the result for theN-dimensional case. They provided necessary and
sufficient tensorial conditions for weakly generic metrics to be conformal Einstein spaces
where weakly generic means that the rank of the below introduced bundleE vanishes at
all points of the manifold: rk(E) = 0. The main results in this paper deal with the case that
the rank ofE is less or equal to one on an open and dense subset of the manifold. Since
detW �= 0 yields rk(E) = 0, but on the contrary there is a huge variety of manifolds with
rk(E) ≤ 1 and detW = 0, the results in this paper and in[9] mean a major improvement to
the result in[15].

Suppose (M,g) is a semi-Riemannian manifold of dimensionn ≥ 4 andW the Weyl
tensor, then the set

E := {v ∈ TM|W(v, ., ., .) = 0} ⊆ TM

is conformally invariant and a vector space in each fiber. LetME be the set of all points
of M at which the rank ofE is locally constant, thenME is open and dense inM andE is
a vector bundle overME. In Section4, we prove some basic properties ofE, for instance
thatE is integrable on spaces with harmonic Weyl tensor (C-spaces). Another fact is that
the rank ofE is less or equal ton− 4 as long asg is not conformally flat and the restriction
of g to E is non-degenerate. In particular, in the four-dimensional Riemannian case each
connected componentU of ME is either conformally flat (i.e.E = TM) or E is trivial on U
(i.e.E = {0}). As already mentioned, metrics withE = {0} are called weakly generic in[9].

Since Einstein spaces areC-spaces and the conformal equivalence problem forC-
spaces is a linear problem, we start with the consideration of conformalC-spaces. A semi-
Riemannian manifold (M,g) is conformally related to a C-space if there exists a function
φ : M → R with

0 = δW − (n− 3)W(., ., .,∇φ).

The solution∇φ of this equation is unique inTM/E. In Section5, we define explicitly a
smooth vector fieldT : ME → TM which is the only possible solution of the above equation
in TM/E. In particular, a semi-Riemannian manifold is conformally related to a C-space if
and only if

CT = 1

n− 3
δW −W(., ., .,T)

vanishes and there is a vector fieldV : ME → E such thatV + T is a gradient field on all
of M. The vector fieldT is well defined for all semi-Riemannian manifolds (M,g), but
generally depends on a choice of a Riemannian metrich on M. In order to defineT, we
show in Section3 that the Moore–Penrose inverse (taken with respect to a Riemannian
metric) of a smooth endomorphism yields a smooth endomorphism on an open and dense
subset of the manifold, in our case this subset coincides withME.

In Section6, we consider spaces conformally related to Einstein spaces of dimension
n ≥ 4, since the three-dimensional case is trivial. We prove that the (0,2) tensor
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ET = Ric − scal

n
g+ (n− 2)

(
∇T∗ + T∗ ⊗ T∗ − 1

n
(div(T) + |T|2)g

)

is conformally invariant in case rk(E) = 0. Hence, a semi-Riemannian manifold (M,g) with
E = {0} is locally conformally related to an Einstein space if and only ifET vanishes. A
similar statement was also shown by Gover and Nurowski in[9] (weakly generic case). This
is a major extension of the previous result in[15], since detW �= 0 yields rk(E) = 0, but there
is a huge variety of spaces with rk(E) = 0 and detW = 0. For instance, all four-dimensional
Riemannian manifolds which are (anti) self-dual and not conformally flat satisfy rk(E) = 0
and detW = 0.

In the last section, we discuss the case rk(E) = 1. In order to do so we suppose thatV is
a (normalized) nowhere vanishing vector field with values inE and consider the vector field
S = T+ fV for a functionf. Trying to solveES = 0 supplies a first order pde-system of
Riccati type forf. In most cases, it is possible to computef explicitly by tensorial obstructions.
However, if the Einstein metric is not unique in the conformal class, this system has two
solutions. Moreover, this approach provides necessary and sufficient tensorial condition for
the existence of a non-trivial solutionψ of ∇2ψ = 
ψ

n
g on Einstein spaces. Solutions of

this pde-system characterize the different Einstein metrics in the conformal class as well as
warped product metrics (cf.[13]), in the four-dimensional Lorentz case they characterize
plane gravitational waves.

2. Preliminaries

Let (Mn, g) be a semi-Riemannian manifold and∇ be the Levi–Civita connection forg,
thenR denotes the Riemannian curvature tensor ofg:

R(X, Y,Z, T ) = g(RX,YZ, T ) = g(∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z, T ).

The Ricci tensor Ric is given by Ric(X, Y ) = trace{V �→ RV,XY} and the scalar curvature
by scal= trace(Ric). Using the Kulkarni–Nomizu product:

(g� h)(X, Y,Z, T )

:= g(X, T )h(Y,Z) + g(Y,Z)h(X, T ) − g(X,Z)h(Y, T ) − g(Y, T )h(X,Z)

we obtain the Weyl tensorW and the Schouten tensork:

W := R− g� k, k := 1

n− 2

(
Ric − scal

2(n− 1)
g

)
. (1)

We consider conformal transformations (M,g) → (M, ḡ := ψ−2g) and denote the sym-
bols forḡ by ∇̄, R̄, W̄, . . .. If (M,g) → (M, ḡ := ψ−2g) is a conformal transformation with
ψ = eφ, the Levi–Civita connections and the Weyl tensors are related by:

∇̄XY = ∇XY − dφ(X)Y − dφ(Y )X+ 〈X, Y〉∇gφ

W̄ = ψ−2W.
(2)
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In this case∇gφ is the gradient ofφ with respect to the metricg, in particular if∗ : TM →
T ∗M is the isomorphism given byY∗(X) = g(X, Y ), dφ equals (∇gφ)∗. We define the
divergence of a (0, s) tensorA by:

δr(A) = Cr,s+1(∇A), (r ≤ s)

whereCr,s is the metric contraction with respect to the indices (r, s) and∇A is the following
(0, s+ 1) tensor field:

(∇A)(X1, . . . , Xs, V ) := (∇VA)(X1, . . . , Xs).

If A is symmetric,δrA does not depend onr, and ifA is a curvature operator, we introduce as
abbreviationδA := δ4A. Moreover, we define the exterior derivative of a symmetric (0,2)
tensorb by

d∇b(X, Y,Z) := (∇Xb)(Y,Z) − (∇Zb)(X,Z).

The differential Bianchi identity yields (cf.[1]; Ch. 16.3)

δR = d∇Ric and δW = (n− 3)d∇k (3)

wherek is the Schouten tensor introduced in equation(1). A semi-Riemannian manifold
(Mn, g) of dimensionn ≥ 4 is calledC-space or space with harmonic Weyl tensor (cf. [1];
16.D) if δW vanishes. Suppose ¯g = ψ−2g is a conformal transformation withψ = eφ, then
we obtain the well-known relation (cf.[1]; 16.25):

δW = δW − (n− 3)W(., ., .,∇gφ). (4)

3. Moore–Penrose inverse transformations

Suppose (V, h) is a Riemannian vector bundle overM. If A : V→ V is a symmetric
bundle endomorphism with respect to the inner producth, then there is at each pointp ∈ M
an unique endomorphismA#

p ∈ End(Vp) which satisfies (Moore–Penrose inverse; cf.[8])

Ap ◦ A#
p ◦ Ap = Ap, A#

p ◦ Ap ◦ A#
p = A#

p,

Ap ◦ A#
p and A#

p ◦ Ap are symmetric w.r.t.h.
(5)

Let MA consist of all pointsp ∈ M at which the number of distinct eigenvalues ofA is
locally constant, thenMA is open and dense inM. If A ∈ Γ (End(V)) is of orderCk, the map

A# : MA → End(V|MA
), p �→ A#

p

is of orderCk, in particularA# is a section in End(V|MA
). A# is called theMoore–Penrose

inverse of A. The bundleV admits in every point ofM an orthogonal decomposition into
eigenspaces ofA: Vp = V1

p ⊕ · · · ⊕ V kp. Since the number of distinct eigenvalues ofA is
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constant in the connected components ofMA,p �→ Vjp is differentiable on each component

of MA. Thus,Vj → U is a subbundle ofV→ U as long asU ⊂ M is contained in a con-
nected component ofMA. The existence and the uniqueness of the Moore–Penrose inverse
follows from linear algebra, while the differentiability ofA# can be proved as follows. Let
U be a connected component ofMA, then Im(A) → U and ker(A) → U are subbundles
of V→ U. In particular,A|U supplies an orthogonal decompositionV = Im(A) ⊕ ker(A).
Now A restricted to Im(A) is invertible. Hence, if we setA# := A−1 on Im(A) andA# := 0
on ker(A), the endomorphismA# satisfies the identities in(5). Since Im(A) and ker(A) are
subbundles ofV|U as well as the assignmentA �→ A−1 is smooth,A# is of orderCk onMA

as long asA is of orderCk. Furthermore, if detA does not vanish onM,A# equalsA−1 and
is defined on all ofM.

Definition 1. Let T rs(M) = (TM)r ⊗ (T ∗M)s denote the bundle of (r, s) tensor fields on
a semi-Riemannian manifold (M,g). SupposeA ∈ �(T 0

4(M)) is an algebraic curvature
tensor, thenA becomes an endomorphism ofT 0

2(M) in the following way:

A : T 0
2(M) → T 0

2(M), X∗ ⊗ Y∗ �→ A(X∗ ⊗ Y∗)

whereA(X∗ ⊗ Y∗)(Z, T ) := A(Y,Z, T,X). If b ∈ T0
2(M) is (skew) symmetric,A(b) is

(skew) symmetric. In particular,A is an endomorphism on two forms:

A : Λ2(T ∗M) → Λ2(T ∗M).

Since the first Bianchi identity implies

g(A(X∗ ∧ Y∗), Z∗ ∧ T ∗) = A(X∗ ∧ Y∗)(Z, T ) = A(X, Y,Z, T ),

the endomorphismA is symmetric onΛ2(T ∗M) with respect to the tensor product extension
of g. In this caseX∗ ∧ Y∗ is the two form given byX∗ ⊗ Y∗ − Y∗ ⊗X∗.

LetW be the Weyl tensor on (Mn, g) and define

E :=
⋃
p∈M
Ep ⊆ TM, where Ep := {v ∈ TpM|W(v, ., ., .) = 0}.

The setEp is a vector space for allp ∈ M, but in generalE is not a vector bundle over
M. In the Riemannian case, the Weyl tensor considered as symmetric endomorphism
W : Λ2(T ∗M) → Λ2(T ∗M) is diagonalizable, however, ifg is indefinite, the Weyl en-
domorphismW can be nilpotent. For instance,W is not diagonalizable for space times of
Petrov type N. Thus, we introduce a Riemannian metrich onTM and extendh in the usual
way toT ∗M andΛ2(T ∗M). Denote byW t : Λ2(T ∗M) → Λ2(T ∗M) the adjoint ofWwith
respect toh, thenW tW is non-negative definite and symmetric with respect toh. Moreover,
let E⊥h be theh-orthogonal complement ofE in TM, then theh-orthogonal decomposition
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Λ2(T ∗M) = ker(W tW) ⊕ Im(W tW),

Λ2(TpM) = Λ2(E⊥hp ) ⊕Λ2(Ep) ⊕ E⊥hp ⊗ Ep

and ker(W tW) = ker(W) imply:

dim ker(Wp) ≥ dimEp

(
n− dimEp + 1

2

)
. (6)

In particular, this inequality shows thatEp is the trivial vector space if detWp does not
vanish. Contrary, a lower bound of dimEp in terms of dim ker(Wp) is impossible in general.
Since ifM is even-dimensional and there is a non-degenerate two formη in the image of
Wp, the one-formη(v, .) does not vanish for allv ∈ TpM − {0} which shows dimEp = 0.
In particular, Im(Wp) could be two-dimensional (W is trace free) and dimEp = 0.

Denote byw : T ∗M → T ∗M the negative Ricci contraction ofW tW, i.e. if θ is a one-
form andX a vector field,w(θ)(X) is the trace of the endomorphism:

T ∗M → T ∗M, η �→ X�W tW(θ ∧ η).

If f1, . . . , fn is a base ofTpM andη1, . . . , ηn the corresponding cobase ofT ∗
pM (ηj(fi) =

δij), we have:

w(θ) =
n∑
i=1

fi�W tW(ηi ∧ θ).

Using ah-orthonormal base, we conclude thatw is symmetric with respect toh and in
particular,W tW ≥ 0 suppliesw ≥ 0. Sincew is symmetric with respect to the positive
definite metrich onT ∗M, there is an open and dense subsetMw of M on which the Moore–
Penrose inverse ofwexists. Moreover, the isomorphism∗ : TM → T ∗M, v �→ g(v, .) yields
an isomorphism

Ep → ker(wp). (7)

The fact ∗(Ep) ⊆ ker(wp) follows from the definitions. In order to see equality, let
v ∈ TpM be a vector withw(v∗) = 0. We showW(v∗ ∧ θ) = 0 which is equivalent to
W tW(v∗ ∧ θ) = 0 for all θ ∈ T ∗

pM. Supposeη1, . . . , ηm ∈ Λ2(T ∗
pM) is a h-orthonormal

base ofΛ2(T ∗
pM) consisting of eigenvectors to the non-negative eigenvaluesλ1, . . . , λm

of W tWp. Considering the two formsηj as skew symmetric mapsT ∗
pM → T ∗

pM (use

h) leads towp = −∑m
j=1 λj(ηj)

2. Since each of these summands is non-negative def-

inite, w(v∗) = 0 implies (ηj)2(v∗) = 0 for all j with λj �= 0. But this gives the claim
W tW(v∗ ∧ θ) = 0. Therefore, equation(7) and the above arguments prove thatE→ Mw
is smooth. In particular, ifU is a connected component ofMw, E|U is a subbundle ofTM|U .
In the introduction we definedME to be the set of all pointsp ∈ M at which the rank ofE is
locally constant, in particularMw ⊆ ME. Since the map1 −w#w is theh-orthogonal pro-
jectionT ∗M → ker(w), the endomorphism∗−1(1 −w#w)∗ is theh∗ = g−1hg-orthogonal
projectionTM → E onMw (in this case and in the following the Riemannian metrich∗
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is defined onTM by h∗(X, Y ) := h(X∗, Y∗)). Hence,∗−1(1 −w#w)∗ : TMw → E can be
differentiable extended toME. Use(7) and the factw# = (w|Im(w))−1 to show thatw# is
differentiable onME. Thus, we can assumeMw = ME, whileME does not depend on the
choice of the Riemannian metrich.

Since the Weyl tensor is conformally invariant, it should be mentioned thatE, ker(W)
andME are invariant under conformal transformation.

Example 2. The Reissner–Nordström solution (cf.[10]; (5.5)) provides an example of a
manifold withME �= M. Let:

ds2 = −
(

1 − 2m

r
+ e2

r2

)
dt2 + dr2

(1 − 2m
r

+ e2

r2
)

+ r2(dθ2 + sin2 θ dφ2)

be the line element onM := R× R>0 ×r S
2 with e > m > 0. Then (M,ds2) is a four-

dimensional Lorentz manifold. The Weyl tensor vanishes on the hypersurfaceN :={(
t, r = e2

m
, θ, φ

)
|t ∈ R, (θ, φ) ∈ S2

}
, but onME = M −N the Weyl tensor is non-zero,

in particularE = {0} onME.

4. Some facts about E

Lemma 3. Suppose (M,g) is a semi-Riemannian manifold with a harmonic Weyl tensor:
δW = 0. Then E is an integrable distribution on ME.

Proof. We first remark thatδW = 0 is equivalent to d∇W = 0 (cf. [1]; 16.41) where d∇W
is given by

d∇W(X, Y,Z, ., .) := (∇XW)(Y,Z, ., .) + (∇YW)(Z,X, ., .) + (∇ZW)(X, Y, ., .).

SupposeU andV are vector fields with values inE. We have to show that [U,V ] is a section
in E. Since∇ is torsion free and∇XW has the symmetries of a curvature operator, we obtain
for all vector fieldsX, Y,Z and allU,V ∈ �(E):

W([U,V ], X, Y, Z) = W(∇UV − ∇VU,X, Y,Z)

= (∇UW)(V,X, Y,Z) − (∇VW)(U,X, Y,Z)

= d∇W(U,V,X, Y,Z) − (∇XW)(U,V, Y, Z).

We assumed d∇W = 0 and sinceU,V ∈ �(E) yields

(∇XW)(U,V, Y, Z) = 0,

W([U,V ], X, Y, Z) vanishes for allX, Y,Z which proves [U,V ] ∈ Γ (E).

Lemma 4. Suppose (Mn, g) is a semi-Riemannian manifold and E is non-degenerate on
ME, i.e. the restriction of the metric g to E is non-degenerate. Then the rank of E is less or
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equal to n− 4 on the components of ME which are not conformally flat. In particular, if E
is non-degenerate and rk(E) > n− 4 on ME, we conclude ME = M and g is conformally
flat.

Proof. E is non-degenerate if and only if theg-orthogonal complementE⊥ is non-degenerate
(cf. [17]). Let g| andW| be the restrictions ofg, respectively,W to E⊥, thenW| is a Weyl
curvature operator for (E⊥, g|). Since the space of Weyl curvature operators is trivial in
dimensionm ≤ 3, we conclude thatW| = 0 if rk(E⊥) ≤ 3. In particular, the Weyl tensorW
has to vanish on each component ofME which has rk(E⊥) ≤ 3.

Corollary 5. Let (M,g) be a four-dimensional Riemannian manifold. Suppose U is a
connected component ofME, then either (U, g) is conformally flat or the rank of the bundle
E→ U is zero. Moreover, choosing h = g, the Ricci contraction ofW 2 =W tW satisfies
(cf. [1]; 16.75 resp. [5])

w = 1
2tr(W 2)Id.

If (M,g) is a four-dimensional Lorentz manifold and U is a connected component of ME,
one of the following three cases occurs:

(1) (U, g) is conformally flat.
(2) (U, g) is of Petrov type N and E is one-dimensional as well as light like.
(3) rk(E) = 0 on U.

Proof. We only consider the Lorentz case. The above lemma shows thatE cannot be non-
degenerate in dimension four, i.e. we haveE = {0}, E = TM or E is light like. Moreover,
using the Hodge star operator onΛ2M and the fact∗ ◦W =W ◦ ∗, thenE must be one-
dimensional and Im(W) has to be two-dimensional. This shows that (U, g) is of Petrov
typeN.

A semi-Riemannian manifold (M,g) is said to beconformally symmetric if the Weyl
tensor is parallel:∇W = 0. In particular, a conformally symmetric space has a harmonic
Weyl tensor.

Proposition 6. Suppose (Mn, g) is a connected conformally symmetric space. Then E is
an integrable distribution on M (i.e. ME = M) , which is preserved by the Levi–Civita
connection: ∇XU ∈ Γ (E) for all U ∈ Γ (E) and X ∈ Γ (TM).

Moreover, if E is non-degenerate of rank m ≤ n− 4, (M,g) is locally a Riemannian
product:

M
loc=M1 ×M2, g

loc= π∗
1(g1) + π∗

2(g2)

where πj : M1 ×M2 → Mj, j = 1,2, are the projections and (Mj, gj) are semi-
Riemannian manifolds with π∗

1(TM1) = E and π∗
2(TM2) = E⊥.



394 M. Listing / Journal of Geometry and Physics 56 (2006) 386–404

Proof. Let p and q be arbitrary points inM and Pγ : TpM → TqM be the parallel
transport for the smooth curveγ : [0,1] → M with γ(0) = p and γ(1) = q. Pγ is an
isometric isomorphism. The Levi–Civita connection onT ∗M ⊗ T ∗M ⊗ T ∗M induces an-
other parallel transport̄Pγ : (T ∗

pM)3 → (T ∗
q M)3. Since the Weyl tensor is parallel, we

obtain

P̄γ (W(v, ., ., .)) = W(Pγv, ., ., .) (8)

for any v ∈ TpM. In order to see this letθ = θ(t) be the parallel transport ofθ(0) :=
W(v, ., ., .) alongγ. Moreover, supposeX = X(t) is the parallel transport ofv alongγ
and defineη(t) := W(X(t), ., ., .). By definition we have∇γ ′θ = 0 and∇γ ′X = 0, i.e. we
conclude from∇W = 0

∇γ ′η = (∇γ ′W)(X, ., ., .) +W(∇γ ′X, ., ., .) = 0.

Since parallel transport is unique,η(0) = θ(0) suppliesη(1) = θ(1) and this shows equation
(8). Thus, ifv is contained inEp,W(v, ., ., .) = 0 and equation(8)yieldsW(Pγv, ., ., .) = 0
which is equivalent toPγv ∈ Eq. This provesPγ : Ep → Eq and sincePγ is injective, we
conclude dimEp ≤ dimEq. Considering the parallel transport fromq to p yields dimEq ≤
dimEp. Therefore, dimEp does not depend on the choice ofp ∈ M andE is a subbundle of
TM. Furthermore, we have already proved thatE is integrable ifδW = 0.

Let U be a vector field with values inE, thenW(∇XU, Y,Z, T ) = 0 (use∇W = 0) shows
∇XU ∈ Γ (E). If E is non-degenerate,E⊥ is non-degenerate andTM decomposes orthogonal
intoE⊕ E⊥. Since parallel transport preserves the decompositionTM = E⊕ E⊥, we obtain
the second claim from holonomy theory.

Remark 7. If (M,g) is an irreducible locally symmetric space, we concludeME = M and
eitherg is of constant sectional curvature orE = {0}.

5. Conformal C-spaces

A semi-Riemannian manifold (Mn, g), n ≥ 4, is conformally related to a space with
harmonic Weyl tensor if and only if there is a functionφ with:

δWZ = (n− 3)W(Z∗ ∧ dφ) (9)

[cf. equation(4)]. In this caseδWZ is the two form defined by

δWZ(X, Y ) := δW(X, Y,Z).

A necessary condition for a solution of(9) is δWZ ∈ Im(W), but we compute dφ explicitly
which means that this condition will be superfluous. Leth be a Riemannian metric onTM,
W t be the adjoint ofW with respect toh,w be the negative Ricci contraction ofW tW and
w# be the Moore–Penrose inverse ofw which is well defined and smooth onME. Applying
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W t to equation(9) yields

W t(δWZ) = (n− 3)W tW(Z∗ ∧ dφ).

Moreover, supposee1, . . . , en is a g-orthonormal base ofTpM, i.e. g(ei, ej) = εiδij with
εi := g(ei, ei) = ±1. Letη1, . . . , ηn be the corresponding cobase inT ∗

pM, thenηj := εje
∗
j

shows

n∑
i=1

εiei�W t(δWei ) = (n− 3)
n∑
i=1

εiei�W tW(e∗i ∧ dφ) = (n− 3)w(dφ).

Thus, theh-orthogonal projection of dφ to (E∗)⊥h is given by

w#w(dφ) = 1

n− 3
w#

(
n∑
i=1

εiei�W t(δWei )

)
.

In particular, we obtain

dφ = 1

n− 3
w−1

(
n∑
i=1

εiei�W t(δWei )

)

on the components ofME where rk(E) = 0.

Definition 8. Let (Mn, g) be a smooth semi-Riemannian manifold of dimensionn ≥ 4 and
e1, . . . , en be ag-orthonormal base withεj := g(ej, ej) ∈ {±1}. For any choice of a smooth
Riemannian metrich on TM the vector fieldT given by

T
∗ = g(T, .) := 1

n− 3
w#

n∑
i=1

εiei�W t(δWei ) = 1

2(n− 3)
w#
∑
i,j,k

(W t)ijk δW
ijk (10)

and the (0,3) tensor

CT := d∇k−W(., ., .,T)

are smooth on the open and dense subsetME ⊆ M.

In the definition ofCT we used d∇k instead ofδW in order to get the Cotton tensor in
dimensionn = 3, but for the computations we consider:

CT = 1

n− 3
δW −W(., ., .,T). (11)

In general, the vector fieldTas well as the tensorCT depend on the choice of the Riemannian
metrich. If g is indefinite, there is no canonical choice ofh, hence it seems difficult to get
a tensorCT only depending ong. However, ifCT vanishes,T is unique inTM/E:
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Lemma 9. Suppose (M,g) is a semi-Riemannian manifold and T1 as well as T2 are the
vector fields defined in (10)with respect to Riemannian metricsh1 andh2.ThenCT1 vanishes
if and only if CT2 vanishes. Moreover, we have CT1 = CT2 if and only if T1 − T2 ∈ Γ (E).

Proof. The second claim is obvious. In order to see the first claim, we use the definition of
T2 and the definition ofCT1 in equation(11):

T
∗
2 = w#

2

(
n∑
i=1

εiei�W t(CT1(., ., ei) +W(e∗i ∧ T∗
1))

)

= w#
2w2(T∗

1) +w#
2

(
n∑
i=1

εiei�W t(CT1(., ., ei))

)
.

Thus,CT1 = 0 andw#
2w2(T∗

2) = T∗
2 imply w#

2w2(T∗
1 − T∗

2) = 0. Sincew#
2w2 is the or-

thogonal projectionT ∗M → (E∗)⊥h2 with respect toh2, we concludeT∗
1 − T∗

2 ∈ Γ (E∗).
Therefore,T1 − T2 ∈ Γ (E) andCT1 = 0 yieldCT2 = 0. �

Remark 10. The vector fieldT does not depend on a conformal transformation of the
Riemannian metrich.

Proposition 11. Suppose ḡ = ψ−2g is a conformal transformation with ψ = eφ, then C̄
T̄

equals CT, while for the definition of T̄ and T the Riemannian metric h is fixed or scaled
by a conformal factor.

Proof. W̄ = ψ−2W suppliesW̄ = ψ2W andW̄t = ψ2W t, in particular, we obtain̄w =
ψ4w and w̄# = ψ−4w#. If e1, . . . , en is an orthonormal base with respect tog, e1 :=
ψe1, . . . , en := ψen is an orthonormal base with respect to ¯g, i.e.

T̄
∗̄ = 1

n− 3
w̄#

(
n∑
i=1

εiei�W̄t(δ̄W̄ei )

)

= 1

n− 3
w#

(
n∑
i=1

εiei�W t(δWei − (n− 3)W(e∗i ∧ dφ))

)
= T∗ −w#w(dφ).

Thus, the vector fields satisfy:

T̄ = ψ2
T− ψ2(∇gφ)E⊥h∗ , (12)

where (∇gφ)E⊥h∗ is the projection of∇φ to theh∗-orthogonal complement ofE in TM.
SinceW(., ., ., (∇φ)E) vanishes, we conclude the conformal invariance of the tensorCT if
n > 3 (use(4)):

C̄
T̄

= 1

n− 3
δ̄W̄ − W̄(., ., ., T̄)

= 1

n− 3
δW −W(., ., .,∇gφ) −W(., ., .,T− (∇gφ)E⊥h∗ ) = CT.
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In dimensionn = 3 the conformal invariance of the Cotton tensorCT = d∇k is already
known. �

SinceCT is trivial on a space with harmonic Weyl tensor, the vanishing ofCT is a
necessary condition for a semi-Riemannian manifold to be locally conformally related to a
C-space. However,CT = 0 is a sufficient condition if and only if there is a sectionV in E
in such a way thatT+ V is a (differentiable) gradient field onM. Hence, we conclude the
following in case rk(E) = 0.

Proposition 12. Let (Mn, g) be a simply connected semi-Riemannian manifold of dimension
n ≥ 4 such that rk(E) = 0 onME. Then (M,g) is (globally) conformally related to a space
with harmonic Weyl tensor if and only if dT∗ and CT vanish on ME as well as T can be
(differentiable) extended to M. Moreover, if detW does not vanish on ME, the condition
dT∗ = 0 follows from CT = 0.

Proof. The claims follow from the uniqueness of the conformal factor (up to scaling) and
the definition ofT andCT. SinceM is simply connected andT∗ is exact, there is a function
φ : M → R with ∇gφ = T. Setψ := eφ, thenψ−2g is a space with harmonic Weyl tensor.
In order to see the last claim we consider the divergence ofCT with respect to the third
argument. A straightforward calculation shows (cf.[15])

δ3(CT) = CT(., .,T) −W(dT∗),

i.e. we conclude dT∗ = 0 from the injectivity ofW andCT = 0. �

6. Conformal Einstein spaces

A semi-Riemannian manifold (M,g) of dimensionn ≥ 3 is calledEinstein space if the
traceless Ricci tensor Ric◦ := Ric − scal

n
g vanishes. (M,g) is said to be aconformal Einstein

space if g is locally conformally related to an Einstein space. Let (M,g) → (M, ḡ := ψ−2g)
be a conformal transformation withψ = eφ. The Ricci tensor has the following transfor-
mation behavior (cf.[13]; Lemma A.1 or[1]):

Ric = Ric + (n− 2)[∇2φ + dφ ⊗ dφ] + [
φ − (n− 2)〈∇gφ,∇gφ〉]g, (13)

where∇2φ is the Hessian ofφ (i.e.∇2φ(X, Y ) = 〈∇X∇gφ, Y〉) and
φ is the trace of∇2φ.
If (M, ḡ) is an Einstein space, we conclude for the Ricci tensor of (M,g):

0 = Ric◦ + (n− 2)[∇2φ + dφ ⊗ dφ] − n− 2

n
[
φ + ∣∣∇gφ

∣∣2]g. (14)

Moreover, suppose (M,g) is a semi-Riemannian manifold andφ : M → R is a function
which satisfies(14), then (M,e−2φg) is an Einstein space [use(13)].
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Definition 13. Let V be a vector field, then the traceless (0,2) tensor field:

EV := Ric◦ + (n− 2)

(
∇V ∗ + V ∗ ⊗ V ∗ − 1

n
[div(V ) + g(V, V )]g

)

is calledconformal Ricci tensor with respect to V .

The tensor fieldEV is symmetric if and only if∇V ∗ is symmetric, i.e. if and only ifV ∗
is closed. Thus, a semi-Riemannian manifold (M,g) is locally conformally related to an
Einstein space if and only if there is a vector fieldV withEV = 0. If M is simply connected
andEV vanishes, there is a functionψ = eφ which gives the Einstein space (M,ψ−2g). In
this caseV equals∇gφ. The differential Bianchi identity shows that an Einstein space has
a harmonic Weyl tensor [cf.(3)]. Thus, the first candidate of a vector fieldV which satisfies
EV = 0 is the vector fieldT given in(10).

Lemma 14. Let ḡ = ψ−2g,ψ = eφ, be a conformal transformation and T̄ as well as T be
the corresponding vector fields defined in (10) with respect to a fixed Riemannian metric
h or Riemannian metrics h̄ and h with h̄ = ψ−2h. If dφ is contained in the h-orthogonal
complement of E∗ ⊆ T ∗M in every point of ME, the conformal Ricci tensors satisfy:

Ē
T̄

= ET.

Proof. Introduce the (0,2) tensor

FV := ∇V ∗ + V ∗ ⊗ V ∗ − 1

n
[div(V ) + g(V, V )]g.

One easily verifies for two vector fieldsV andZ:

FV+Z = FV + FZ + V ∗ ⊗ Z∗ + Z∗ ⊗ V ∗ − 2

n
g(V,Z)g. (15)

Moreover, using(2) a straightforward calculation yields:

F̄ψ2V = FV + dφ ⊗ V ∗ + V ∗ ⊗ dφ − 2

n
g(∇gφ, V )g.

Sinceψ−2 is the conformal factor, equation(12) suppliesT̄ = ψ2(T− Y ) whereY is de-
termined by theh-orthogonal decomposition of dφ = X∗ + Y∗ in E∗ ⊕ (E∗)⊥h = T ∗M
[X∗ : ME → E∗ andY∗ : ME → (E∗)⊥h]. Thus, we obtain:

F̄
T̄

= FT−Y + dφ ⊗ (T∗ − Y∗) + (T∗ − Y∗) ⊗ dφ − 2

n
g(∇gφ,T− Y )g

= FT − FY +X∗ ⊗ (T∗ − Y∗) + (T∗ − Y∗) ⊗X∗ − 2

n
g(X,T− Y )g.
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Use equation(13) to conclude that the traceless Ricci tensors are related by (n− 2)F∇φ.
Hence, the definition ofEV and∇gφ = X+ Y show:

Ē
T̄

= Ric◦ + (n− 2)F̄
T̄

= Ric◦ + (n− 2)

[
FX+Y + FT − FY +X∗ ⊗ (T∗ − Y∗)

+ (T∗ − Y∗) ⊗X∗ − 2

n
g(X,T− Y )

]

= ET + (n− 2)

[
FX +X∗ ⊗ T∗ + T∗ ⊗X∗ − 2

n
g(X,T)g

]
. (16)

But we assumed that dφ takes it values in (E∗)⊥h ⊆ T ∗M, i.e. X = 0 supplies the
claim. �

Remark 15. We have proved thatET is a conformal invariant for all semi-Riemannian
manifolds (M,g) with rk(E) = 0. In particular, if (M,g) is a Riemannian four manifold,ET
is conformally invariant on the open subset{p ∈ M|W(p) �= 0} ⊆ M.

Theorem 16. Suppose (M,g) is a simply connected semi-Riemannian manifold of dimen-
sion n ≥ 4 and with rk(E) = 0 on ME. Then (M,g) is (globally) conformally related to an
Einstein space if and only if ET vanishes onME and T is extendible to a vector field on M.
In particular, this equivalence does not depend on the choice of the Riemannian metric h
in order to define T.

Proof. SinceET is a conformal invariant on manifolds with rk(E) = 0 andT vanishes on
Einstein spaces,ET = 0 is a necessary condition. Conversely,ET = 0 implies thatT∗ is
closed. SinceM is simply connected, there is a functionφ : M → R with T = ∇φ, and the
above computations show that e−2φg is an Einstein metric onM. �

The following corollary was already proved in[15] and it is a result of the main theorem
and the analytic regularity of Einstein metrics (cf.[6]).

Corollary 17. Suppose (M,g) is a connected four-dimensional Riemannian manifold. Then
(M,g) is a conformal Einstein space if and only if g is conformally flat or ET vanishes and
T is extendible to a vector field on M.

ET is a conformal invariant in the category of metrics with rk(E) = 0 while CT is a
conformal invariant for any metric. In particular, the vanishing ofET is only sufficient
for a metric to be conformally Einstein, in case rk(E) > 0 its vanishing is not necessary.
Conversely,CT = 0 is a necessary condition for all conformal Einstein spaces but in case
of dimensionn ≥ 4 it is not sufficient. There is another invariant which has to vanish
for a conformal Einstein space. Thegeneralized Bach tensor BT (cf. [14]) is conformally
invariant. SinceBT vanishes for Einstein spaces,BT = 0 is necessary forg to be conformally
Einstein but according to[12,18,16]it is not sufficient to guarantee thatg is conformally
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Einstein. In the last section, we consider the case rk(E) = 1, but if rk(E) is greater than
one, the problem of giving tensorial conditions which are necessary and sufficient for a
conformal Einstein space remains unsolved.

7. The case rk(E) = 1

Suppose (M,g) is a semi-Riemannian manifold with rk(E) = 1. We conclude from the
above considerations that if (M,e−2φg) is an Einstein space, the gradient ofφ is given by
the vector field:

S := T+ fV

wheref : M → R is a smooth function andV is a fixed nowhere vanishing vector field
with values inE. SinceS is a gradient field, we obtain:

0 = dS∗ = dT∗ + df ∧ V ∗ + fdV ∗. (17)

If dT∗ is not a section inE∗ ∧ T ∗M, this yields an unique obstruction onf and therefore a
solution of the problem. Thus, we can suppose that dT

∗ and dV ∗ are sections inE∗ ∧ T ∗M.

Definition 18. In the case that E is not light like, we normalize V ∈ Γ (E) in such a way
that ε := |V |2 = ±1 and we set Vc := εV . If E is light like, we choose V ∈ Γ (E) such that
there is another light like vector Vc which defines a non-degenerate rank two distribution
E⊕ R · Vc (i.e. the restriction of g to this distribution is non-degenerate). We normalize
again by g(V, Vc) = 1.

Equation(17)yields:

0 = df (Vc)V
∗ − df + fVc�dV ∗ + Vc�dT∗. (18)

We want to computef assumingES = 0. We conclude from(15):

ES = ET + (n− 2)

[
df ⊗ V ∗ − 1

n
df (V )g+ f 2V ∗ ⊗ V ∗ − 1

n
f 2|V |2g

]

+ (n− 2)f

[
∇V ∗ − 1

n
div(V )g+ V ∗ ⊗ T∗ + T∗ ⊗ V ∗ − 2

n
〈V,T〉g

]
.

Therefore, equation(18)supplies

ES = ET + (n− 2)

[
D+ fA+ (df (Vc) + f 2)

(
V ∗ ⊗ V ∗ − 1

n
|V |2g

)]
(19)

whereA andD are given as follows

A := ∇V ∗ − 1
n
div(V )g+ V ∗ ⊗ T∗ + T∗ ⊗ V ∗ − 2

n
〈V,T〉g

+Vc�dV ∗ ⊗ V ∗ − 1
n
dV ∗(Vc, V )g

D := Vc�dT∗ ⊗ V ∗ − 1
n
dT(Vc, V )g.
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Denote byU the rank one subbundle ofT ∗M ⊗ T ∗M which is generated byV ∗ ⊗ V ∗ −
1
n
|V |2g. If ET + (n− 2)D is nowhere a section inU, the conditionES = 0 supplies an

unique obstruction onf and we had solved the problem. Thus, it remains to consider the
case thatET + (n− 2)D and A are sections inU. We apply the vector fieldVc in both
arguments to(19), this leads to:

0 = ES(Vc, Vc) = b1 + fb2 + κ(df (Vc) + f 2)

whereb1 := ET(Vc, Vc), b2 := (n− 2)A(Vc, Vc) andκ := (n− 2)
(

1 − 1
n
|V |4

)
. We insert

df (Vc) into (18)and obtain a first order system of Riccati type:

0 = df + f 2V ∗ + fY∗ + Z∗ (20)

with

Y∗ := b2

κ
V ∗ − Vc�dV ∗, Z∗ := b1

κ
V ∗ − Vc�dT∗.

Supposef is a solution of this system, then(20) yields equation(18) and furthermore,
df (Vc) + f 2 = −fb2/κ − b1/κ simplifies(19) toES = Q+ fP :

Q := ET + (n− 2)D− ET(Vc,Vc)
1− 1

n
|V |4

(
V ∗ ⊗ V ∗ − 1

n
|V |2g

)

P := (n− 2)

[
A− A(Vc,Vc)

1− 1
n
|V |4

(
V ∗ ⊗ V ∗ − 1

n
|V |2g

)]
.

In particular, ifP does not vanish, we obtain an unique obstruction onf. To be more precise,
leth be a Riemannian metric onT ∗M ⊗ T ∗M, then 0= h(ES, P) = h(Q,P) + f · h(P,P)
yieldsf = −h(Q,P)/h(P,P).

Proposition 19. Let (M,g) be a semi-Riemannian manifold with rk(E) = 1 and let h be an
arbitrary Riemannian metric on T ∗M ⊗ T ∗M. Then (M,g) is locally conformally related
to an Einstein space if and only if

• P �= 0 (in a neighborhood): The vector field

S := T− h(Q,P)

h(P,P)
V

satisfies ES = 0.
• P = 0 (in a neighborhood): The system (20) has a solution f and Q = 0.
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We will not discuss the necessary and sufficient integrability conditions for(20)in detail.
If we take the exterior derivative of(20)and insert df , this leads to

f 2(dV ∗ + V ∗ ∧ Y∗) + f (dY∗ + 2V ∗ ∧ Z∗) + dZ∗ + Y∗ ∧ Z∗ = 0.

Since dV ∗ + V ∗ ∧ Y∗ = 0 is equivalent toP is symmetric (cf. proof ofProposition 20),
the conditionP = 0 yields an unique obstruction onf as long as dY∗ + 2V ∗ ∧ Z∗ is not
zero. Obviously, dZ∗ + Y∗ ∧ Z∗ has to vanish if dY∗ + 2V ∗ ∧ Z∗ = 0. In particular, as
the discussion of the Bernoulli system below shows, the vanishing of dZ∗ + Y∗ ∧ Z∗
and dY∗ + 2V ∗ ∧ Z∗ are supposed to be sufficient for the existence of a solution of
(20).

This method can also provide non-trivial solutions of

∇2ψ = 
ψ
n
g (21)

on Einstein manifolds. If (M,g) is an Einstein space and ¯g = ψ−2g is a conformal trans-
formation ofg, thenḡ is an Einstein space if and only ifψ is a solution of(21) (cf. [13]).
Suppose now that (M,g) is a simply connected Einstein space with rk(E) = 1 on M. We
use the above approach to compute this solution. If ¯g = e−2φg is an Einstein space,∇φ has
to be a vector field with values inE (sinceg andḡ areC-spaces), in particular∇φ = fV

for a functionf. Sinceg is Einstein, we haveT = 0 andET = 0. Hence, the system(20)
reduces to a Bernoulli equation:

0 = df + f 2V ∗ + fY∗. (22)

Take d(fV ∗) = 0 into consideration, the necessary and sufficient integrability conditions
for this system are

dV ∗ = V ∗ ∧ (Vc�dV ∗) = −V ∗ ∧ Y∗ and dY∗ = 0.

As usual, we divide the Bernoulli equation byf 2 and obtain a linear system which leads
to the solution of(22). SupposeY∗ = dα for a functionα, then the integrability conditions
yield that e−αV ∗ is exact. Therefore, we can assumeV ∗ = eαdβ for a functionβ, and a
solution of the Bernoulli system is given by

f := 1

βeα
.

f is uniquely determined up to the choice of a constantc in β = β0 + c. Thus, using potential
theory leads to the solution of the equation(21) (note that∇φ = fV andψ = eφ).

If (M,g) is an Einstein manifold, the factT = 0 reduces the tensorP to

P = (n− 2)

[
∇V ∗ + Vc�dV ∗ ⊗ V ∗ − µV ∗ ⊗ V ∗

− 1

n
(div(V ) + dV ∗(Vc, V ) − µ|V |2)g

]
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whereµ is given by〈∇VcV, Vc〉 if V is light like and given by− 1
n−1div(V )|V |2 if V is space

or time like.

Proposition 20. Suppose (Mn, g) is an Einstein manifold of dimension n ≥ 4 and with
rk(E) = 1. Let V and Vc be the vector fields introduced in Definition 18. Then locally there
is a non-constant function φ which gives an Einstein metric e−2φg if and only if P = 0 and
dY∗ = 0, where Y∗ = µV ∗ − Vc�dV ∗.

Proof. That P = 0 and dY∗ = 0 are necessary follows from the above considerations.
SupposeU ⊆ M is simply connected and open. SetY∗ = dα on U. The relation 2∇X∗ =
LXg+ dX∗ proves thatP (respectively,A) is a symmetric tensor if and only if

dV ∗ = V ∗ ⊗ Vc�dV ∗ − Vc�dV ∗ ⊗ V ∗ = V ∗ ∧ Vc�dV ∗

(this is equivalent to the fact that dV ∗ is a section inE∗ ∧ T ∗M). Thus,P = 0 yields:

dV ∗ = V ∗ ∧ Vc�dV ∗ = −V ∗ ∧ Y∗ = dα ∧ V ∗.

In particular, e−αV ∗ is exact and equals dβ for some functionβ. ChooseU andβ in such a
way thatβ �= 0 onU. Thenf := e−α/β is a solution of the system(22) and d(fV ∗) = 0.
Moreover, a straightforward calculation shows df (Vc) + f 2 = −µf . Thus, equation(19)
reduces to:

EfV = (n− 2)f

[
A− µ

(
V ∗ ⊗ V ∗ − 1

n
|V |2g

)]
= fP.

whereEfV vanishes if and only if (U,e−2φg) is Einstein (∇φ = fV ). �

The last two propositions are of particular interest in the four-dimensional Lorentz case,
since the rank ofE is less or equal to one on the components ofMEwhich are not conformally
flat. If ḡ = ψ−2g is a conformal transformation of two four-dimensional Einstein Lorentz
spaces which are not conformally flat, theng and ḡ have to be Ricci flat as well as of
Petrov typeN. Moreover, the gradient of the conformal factorψ is light like and parallel
(i.e.∇2ψ = 0). Hence, a four-dimensional Einstein Lorentz manifold (M,g) which is not of
constant sectional curvature admits a non-trivial parallel vector field if and only if rk(E) = 1,
g is Ricci flat andP as well as dY∗ vanish. These Einstein spaces are called plane gravitational
waves (pp-waves which are Einstein spaces).
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